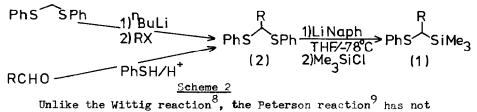
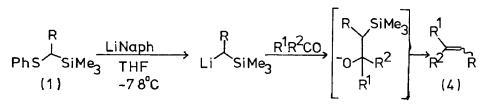

A NEW METHOD FOR PREPARING 1-PHENYLTHIO-1-TRIMETHYLS ILYLALKANES: THE P'FPARATION F&-SILYLCARBANIONS AND OLEFINS.

#### By DAVID J. AGER


Department of Organic Chemistry, Robert Robinson Laboratories, P.O.Box 147, Liverpool, L69 3EX.

Summary: 1-Phenylthio-1-trimethylsilylalkanes(1) are prepared in high yie'd from 1,1-bis(phenylthio)acetals(2) by reaction with lithium naphthalenide(3) followed by chlorotrimethylsilane.  $\alpha$ -Silylcarbanions are formed from the alkanes(1) and lithium naphthalenide(3). Subsequent reaction with carbonyl compounds gave the olefins(4) <u>via</u> the Peterson reaction.


The preparation of 1-phenylthio-1-trimethylsilylalkanes(1) has been described previously<sup>1-3</sup>. They are readily available from phenyl-thiotrimethylsilylmethane(2) by alkylation of the anion<sup>1,2</sup> or by the addition of alkyllithiums to appropriately substituted olefins<sup>3</sup> (scheme 1).



In addition to the above methods, 1-phenylthio-1-trimethylsily1alkanes may be prepared from bis(phenylthio)acetals(2) by the method of Screttas<sup>4</sup> and Cohen<sup>5</sup>. The acetal(2) was added to a solution of lithium naphthalenide(Li Naph)(3)(2.2 equivalents) at  $-73^{\circ}$ C and stirred at this temperature for 0.25h.. Ouenching the reaction with chlorotrimethylsilane gave, after work-up, the alkane(1)(see table 1 and scheme 2). As bis(phenylthio)acetals(2) can be prepared from aldehydes and thiophenol in the presence of an acid<sup>6</sup>, besides alkylation of bis(phenylthio)methane<sup>7</sup>, the above reaction formally describes the use of 1-phenylthio-1-trimethylsilylalkanes(1) as an aldehyde protecting group because these alkanes(1) have already been converted to their corresponding aldehydes<sup>1,2</sup>. Although this is feasible, the reaction's main use is to provide a new, high yielding method for preparing the alkanes(1) when the R group is not a straight alkyl chain.



Unlike the Wittig reaction, the Peterson reaction has not found such a widespread use to prepare olefins<sup>10</sup>. One of the reasons for this is the  $\propto$ -silylcarbanions are not readily available.  $\propto$ -Silylcarbanions have been prepared by the addition of alkyllithiums to vinylsilanes<sup>11</sup>, substitution of selenium<sup>12</sup> or directly from the silane<sup>13</sup>, although this last method gives low yields. The major class of  $\approx$ -silylcarbanion has another anion stabilising group present<sup>14</sup> but these, of course, give rise to substituted olefins<sup>15</sup>. The reaction of 1-phenylthio-1-trimethylsilylalkanes(1) with lithium maphthalenide(3) is, therfore, a useful general method for preparing  $\propto$ -silylcarbanions. These anions were reacted with aldehydes or ketones<sup>17</sup> to give, <u>via</u> the Peterson reaction<sup>9</sup>, the corresponding olefins(4)(see table 2 and scheme 3)



Scheme 3

This method of preparing olefins is novel as 1-phenylthio-1-trimethylsilylalkanes(1) are masked aldehydes<sup>1,2</sup> and retrosynthetically the olefin is formed by joining two carbonyl groups together:-



### TABLE 1

The preparation of 1-phenylthio-1-trimethylsilylalkanes(1) from bis(phenylthio)acetals by reaction with lithium naphthalenide followed by chlorotrimethylsilane.

| (2),R=                          | Yield of (1)(%) |
|---------------------------------|-----------------|
| Ħ                               | 86              |
| мe                              | 90              |
| <sup>n</sup> Pr                 | 82              |
| <sup>i</sup> Pr                 | 87              |
| n <sub>Bu</sub>                 | 75              |
| <sup>\$</sup> Bu                | 79              |
| <sup>n</sup> C5 <sup>H</sup> 11 | 72              |
| Ph                              | 84              |

# TABLE 2

The preparation of olefins from 1-phenylthio-1-trimethylsilylalkanes(1) by reaction with lithium naphthalenide followed by the carbonyl compound.

|                  |                | Yield              | of olefin | n(4)(%)            |            |                |
|------------------|----------------|--------------------|-----------|--------------------|------------|----------------|
| (1),R=           | MeCH()         | <sup>n</sup> PrCHO | PhCH0     | Me <sub>2</sub> CO | PhCOMe     | P <b>h_</b> CO |
| Ħ                | _ <sup>a</sup> | 64                 | 77        | -                  | 83         | <b>7</b> 1     |
| Мє               | -              | 74                 | 75        | -                  | <b>7</b> 9 | <b>%</b> 0     |
| n <sub>Ru</sub>  | 82             | 78                 | 86        | 61                 | 76         | 74             |
| Ph <sup>16</sup> | 71             | 85                 | 76        | <b>7</b> 0         | 69         | 59             |

### Acknowledgements.

The author wishes to thank Professor R.C. Cookson FRS (University of Southampton), Dr. Tan Fleming (University of Cambridge) and Professor I.C. Sutherland (University of Liverpool) for their interest and encouragement.

## References and Notes.

D.J. Ager and R.C. Cookson, <u>Tetrahedron Letters</u>, 1980,<u>21</u>,1677.
 P.J. Kocienski, <u>Tetrahedron Letters</u>, 1980,<u>21</u>,1559.

- 4)C.G. Screttas and M. Micha-Screttas, J.Org.Chem., 1979, 44, 713.
- 5)T. Cohen, W.M. Daniewski and R.B. Weisenfeld, <u>Tetrahedron Letters</u>, 1978,4665; T. Cohen, R.E. Gapinski and R. Hutchins, <u>J.Org.Chem.</u>, 1979,<u>44</u>,3599 and T.Cohen and R.B. Weisenfeld, <u>J.Org.Chem</u>., 1979, 44,3601. See also T. Cohen and J.R. Matz, <u>Synth.Commun.</u>, 1980,<u>10</u>,311.
- 6) J.F. Arens, M. Froling and A. Froling, <u>Rec.Trav.chim.</u>, 1959,<u>78</u>,663 and A. Froling and J.F. Arens, <u>Rec.Trav.chim.</u>, 1962,<u>81</u>,1009.
- 7)E.J. Corey and D. Seebach, <u>J.Org.Chem.</u>, 1966,<u>31</u>,4097.
- 8)G. Wittig and G. Geissler, Annalen, 1953, 580, 44.
- 9)D.J. Peterson, J.Org.Chem., 1968,33,780.
- 10) The exception is anions derived from trimethylsilylmethyl chloride, which is commercially available. See a)D.J. Peterson, <u>Organometallic</u> <u>Chem.Rev.(A)</u>, 1972,7,358 and b)T.H. Chan, E. Chang and E. Vinkour Tetrahedron Letters, 1970,1137.
- 11)a)A.G. Brook, J.M. Duff and D.G. Anderson, <u>Canad.J.Chem.</u>, 1970,<u>48</u>,561
  b)P.F. Hudrlik and D. Peterson, <u>Tetrahedron Letters</u>, 1974,1133.
- 12)W. Dumont and A. Krief, Angew.Chem.Int.Ed., 1976,15,161.
- 13) D.J. Peterson, <u>J.Organometallic Chem.</u>, 1967, 9, 373.
- 14) The use of one or more phenyl groups or a second silyl group has been included in this group.
- 15)For examples of groups used see a)H. Sakurai, K.-i. Nishiwaka and M. Kira, <u>Tetrahedron Letters</u>, 1973,4193, b)I. Ojima and M. Kumagai, <u>Tetrahedron Letters</u>, 1974,4005, c)K. Sachdev and H.S. Sachdev, <u>Tetrahedron Letters</u>, 1976,4223, d)K. Sachdev, <u>Tetrahedron Letters</u>, 1976,4041, e)K. Shimoji, H. Taguchi, K. Oshima, H. Yamamoto and H. Nozaki, <u>J.Amer.Chem.Soc</u>., 1974,96,1620, f)F. Cooke nd P. Magnus, <u>J.Chem.Soc.,Chem.Commun.,1977,513, g)F.A. Carey and A.S. Court, J.Org.Chem., 1972,37,939, h)F.<sup>A.</sup> Carey and O. Hernandez, <u>J.Org.Chem.,</u> 1973,<u>38</u>,2670, and references 1, 2, 9, 10b, 11a and 16.
  </u>
- 16) D.J. Ager, <u>Tetrahedron Letters</u>, 1980, <u>21</u>, 4759.

17)Other electrophiles are under active investigation.

(Received in UK 11 May 1981)